Wing Shape Sensing from Measured Strain
نویسنده
چکیده
A new two-step theory is investigated for predicting the deflection and slope of an entire structure using strain measurements at discrete locations. In the first step, a measured strain is fitted using a piecewise least-squares curve fitting method together with the cubic spline technique. These fitted strains are integrated twice to obtain deflection data along the fibers. In the second step, computed deflection along the fibers are combined with a finite element model of the structure in order to interpolate and extrapolate the deflection and slope of the entire structure through the use of the System Equivalent Reduction and Expansion Process. The theory is first validated on a computational model, a cantilevered rectangular plate wing. The theory is then applied to test data from a cantilevered swept-plate wing model. Computed results are compared with finite element results, results using another strainbased method, and photogrammetry data. For the computational model under an aeroelastic load, maximum deflection errors in the fore and aft, lateral, and vertical directions are -3.2%, 0.28%, and 0.09%, respectively; and maximum slope errors in roll and pitch directions are 0.28% and -3.2%, respectively. For the experimental model, deflection results at the tip are shown to be accurate to within 3.8% of the photogrammetry data and are accurate to within 2.2% in most cases. In general, excellent matching between target and computed values are accomplished in this study. Future refinement of this theory will allow it to monitor the deflection and health of an entire aircraft in real time, allowing for aerodynamic load computation, active flexible motion control, and active induced drag reduction.
منابع مشابه
Modeling of Sensor Placement Strategy for Shape Sensing and Structural Health Monitoring of a Wing-Shaped Sandwich Panel Using Inverse Finite Element Method
This paper investigated the effect of sensor density and alignment for three-dimensional shape sensing of an airplane-wing-shaped thick panel subjected to three different loading conditions, i.e., bending, torsion, and membrane loads. For shape sensing analysis of the panel, the Inverse Finite Element Method (iFEM) was used together with the Refined Zigzag Theory (RZT), in order to enable accur...
متن کاملAn Experimental Investigation of the Flowfield over a Low Aspect Ratio Wing
A wind tunnel investigation was performed to study the flow field over a 70° swept sharped edge delta wing model at high angles of attack. The experiments were conducted in the subsonic wind tunnel at the Department of Mechanical Engineering, Sharif University of Technology. Velocity profiles have been measured using a special pitot tube and hot wire anemometer at angles of attacks of 10 to 35 ...
متن کاملMagnetic Field Triggered Multicycle Damage Sensing and Self Healing
Multifunctional materials inspired by biological structures have attracted great interest, e.g. for wearable/ flexible "skin" and smart coatings. A current challenge in this area is to develop an artificial material which mimics biological skin by simultaneously displaying color change on damage as well as self healing of the damaged region. Here we report, for the first time, the development o...
متن کاملAn Experimental Investigation of the Flowfield over a Low Aspect Ratio Wing
A wind tunnel investigation was performed to study the flow field over a 70° swept sharped edge delta wing model at high angles of attack. The experiments were conducted in the subsonic wind tunnel at the Department of Mechanical Engineering, Sharif University of Technology. Velocity profiles have been measured using a special pitot tube and hot wire anemometer at angles of attacks of 10 to 35 ...
متن کاملUnsteady Aerodynamic Force Sensing from Strain Data
A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed in this study. First, the deflection and slope of the structure are computed from the unsteady strain. Velocities and accelerations of the structure are computed using the autoregressive moving average model, online parameter estimator, low-pass filter, and a least-squares curve fittingme...
متن کامل